1 GENERALITES - DEFINITIONS .................................................................................................................. 2
  1.1 PUISSANCE - AFFAIBLISSEMENT ........................................................................................................ 2
  1.2 BRUIT .................................................................................................................................................... 2
  1.3 RAPIDITE DE MODULATION ................................................................................................................ 2
  1.4 DEBIT (VITESSE DE TRANSFERT) ...................................................................................................... 2

2 TECHNIQUES DE TRANSMISSION .............................................................................................................. 3
  2.1 MODULATIONS D’AMPLITUDE ............................................................................................................ 3
    2.1.1 MBD - Modulation double bande ................................................................................................ 3
    2.1.2 BLU - Modulation bande latérale unique ...................................................................................... 3
    2.1.3 BLR - Modulation bande latérale résiduelle .................................................................................. 3
  2.2 MODULATION DE FREQUENCE ........................................................................................................... 4
  2.3 MODULATION DE PHASE ..................................................................................................................... 5
    2.3.1 Modulation de phase simple ......................................................................................................... 5
    2.3.2 CAP - Carrier Amplitude Phase modulation .............................................................................. 6
  2.4 TRANSMISSION ASYMETRIQUE SUR RTC-RNIS ............................................................................. 6

3 MODEMS NORMALISES ............................................................................................................................... 7
  3.1 PARTICULARITES DES MODEMS : ...................................................................................................... 7
    3.1.1 Brouilleur ("scrambling") ........................................................................................................... 7
    3.1.2 Egaliseur .......................................................................................................................................... 8
    3.1.3 Annulateur d’écho ......................................................................................................................... 8
    3.1.4 Appels infructueux ......................................................................................................................... 9
  3.2 COMMANDE DES APPELS PAR LA JONCTION : .............................................................................. 9
    3.2.1 Commandes V25bis ...................................................................................................................... 9
    3.2.2 Commandes HAYES (AT) ............................................................................................................ 10
  3.3 CHRONOLOGIE DES NORMES : ......................................................................................................... 10

4 QUALITE ET PERFORMANCE DES TRANSMISSIONS ........................................................................... 12
  4.1 QUALITE DES TRANSMISSIONS : ...................................................................................................... 12
    4.1.1 Normes de qualité (V50,V53,V56) ............................................................................................... 12
    4.1.2 Qualité des réseaux numériques .................................................................................................. 13
    4.1.3 Bouclages de test (V54) .............................................................................................................. 13
  4.2 DETECTION ET CORRECTION D’ERREURS : ................................................................................... 14
    4.2.1 Protocole MNP4 ......................................................................................................................... 14
    4.2.2 Protocole V42 ............................................................................................................................. 14
  4.3 COMPRESSION DES DONNEES : ......................................................................................................... 16
    4.3.1 Categories de compression .......................................................................................................... 16
    4.3.2 Techniques de compression ........................................................................................................ 16
    4.3.3 Compression dans les modems .................................................................................................. 16
    4.3.4 Debit reel sur la jonction .............................................................................................................. 17

5 ANNEXES ..................................................................................................................................................... 17
  5.1 COMMANDES V25BIS ........................................................................................................................ 18
  5.2 COMMANDES HAYES (V25TER) ....................................................................................................... 19
  5.3 SERIES V ............................................................................................................................................... 21
1 GENERALITES - DEFINITIONS

MODEM = MOdulateur - DEModulateur

Le rôle d’un modem est d’adapter le signal d’un message au support de transmission utilisé. Nous n’étudierons ici que les modems destinés au RTC (Réseau Téléphonique Commuté).

1.1 puissance - affaiblissement

◊ Affaiblissement : A = 10 log (Ps/Pe)
  sur RTC l’affaiblissement maximum est d’environ 30 dB.
  Attention, derrière certains PABX il peut y avoir un léger gain qui perturbe la réception de certains modems.
◊ Puissance : elle s’exprime en dBm (0 dBm = 1mW)
  Sur RTC un modem émet habituellement à -10dBm (distorsion et écho au delà).
  Un modem doit être capable de décoder un signal compris entre 0dBm (maximum du signal sur RTC) et -43..-48dBm (hystérésis du 109).

1.2 Bruit

➢ Bruit blanc : provoqué par l’agitation thermique, son spectre est plat.
➢ Bruit impulsionnel : provoqué par des évènements extérieurs (couplages électromagnétiques, orages...). Il est source d’erreurs imprévisibles.
➢ Rapport Signal/Bruit : Puissance signal / puissance bruit (en dB)
  Sur lignes analogiques , S/B est de 25dB minimum.
  Sur lignes numérisées , S/B maximum = bruit de quantification = 38dB (selon loi A ou loi µ pour un signal de -5dBm à -30dBm).

1.3 Rapidité de modulation

La rapidité de modulation est le nombre d’états significatifs par seconde.

R = 1/Δ en Bauds (Δ = durée d’un état).

Nyquist à démontré (en 1924) que :

\[ R_{MAX} = 2 W \]

W = Bande passante du support.
  sur RTC la bande est comprise entre 300Hz et 3400Hz donc W=3100Hz
  d’où \[ R_{max} = 6200 \text{ Bauds}. \]

1.4 Débit (vitesse de transfert)

Le débit en ligne s’exprime en bits par seconde (bit/s), c’est la seule grandeur qui intéresse l’utilisateur.

\[ D = R \log_2 V \]
V = Valence du signal (nombre d’états de modulation)

Exemple : modulation de phase à 8 états ($2^3$) à 1600 Bauds, on obtient
D = 1600 x 3 = 4800 bit/s

*Shannon* à démontré (en 1948) que le débit maximum dépend du rapport signal/bruit :

\[
D_{\text{max}} = W \log_2 (1 + S/B)
\]

Exemple : si S/B = 33dB (bruit de quantification sur RTC) , S/B = 10^{33/10} = 1995,
\[
\log_2 x = \log x / \log 2 \quad \text{d’ou} \quad D_{\text{max}} = 3100 \times 10,96 = 33976 \text{ bit/s}.
\]

calcul : quel devrait être le S/B en dB pour permettre un débit de 56 kbit/s ?

### 2 TECHNIQUES DE TRANSMISSION

#### 2.1 Modulations d’amplitude

##### 2.1.1 MBD - Modulation double bande :

L’amplitude d’une porteuse est modulée par le message m(t), la largeur du spectre modulé est double de celle du message. Une grande partie de l’énergie est émise dans la porteuse (qui ne contient pas d’information) et chaque bande latérale contient le même message.

\[
x(t) = A_p (K + m(t)) \cos (\omega_p t + \varphi_p)
\]

<table>
<thead>
<tr>
<th>Porteuse modulée</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

##### 2.1.2 BLU - Modulation bande latérale unique :

Aussi appelée SSB (Single Side Band), On ne transmet qu’une des bande latérale du spectre de la MDB (par filtrage, par déphasage ou par modulateur de Weaver).

L’énergie émise sert à transporter le message seul, la portée est alors beaucoup plus grande mais la démodulation est plus complexe. (utilisé en radio-marine ...)

##### 2.1.3 BLR - Modulation bande latérale résiduelle :

On filtre la MDB avec un filtre à pente douce, on est plus efficace que la MDB mais moins que la BLU tout en étant simple à démoduler (utilisé en télévision).
2.2 Modulation de fréquence

Le modulateur est un oscillateur dont la fréquence est commandée par le message. Dans le cas d’un signal binaire à 2 états on utilise parfois 2 oscillateurs indépendants (risque de saut de phase).

Cette modulation est très peu sensible au bruit mais le spectre est large (débit limité).

\[
x(t) = A_p \cos (\omega_p + \varphi + 2\pi W \int s(u) \, du)
\]

Indice de modulation :

\[
m = 2 \frac{W}{\Delta} \quad (W = \text{excursion de } f_p (\pm W), \Delta = \text{durée d’1 état})
\]

La probabilité d’erreur est minimale lorsque \( m \approx 0.715 \), une bonne optimisation du spectre est obtenue avec \( m \approx 0.66 \).

FSK (Frequency Shift Keying) : Modulation à deux états.

Exemple : Modulation V23 (1964)

La modulation V23 permet, avec une électronique simple, une transmission à l’alternat à 1200 bit/s (1200 bauds) sur le RTC. Une voie de retour optionnelle est prévue.

Voie aller de la transmission de données

| Mode 1 : jusqu’à 600 bauds | 1500 Hz | 1300 Hz | 1700 Hz |
| Mode 2 : jusqu’à 1200 bauds | 1700 Hz | 1300 Hz | 2100 Hz |

Le mode 1 sera utilisé s’il est impossible d’effectuer une transmission convenable en mode 2.

L’indice de modulation est \( m = 2 \cdot 0.400 \cdot 1/1200 = 0.67 \) (proche optimum)

Voie retour

| Jusqu’à 75 bauds | 420 Hz | 390 Hz | 450 Hz |

Cette voie est optionnelle, elle sera utilisée par le minitel Français dans le sens terminal – serveur pour permettre une transmission duplex (asymétrique).
2.3 Modulation de phase

2.3.1 Modulation de phase simple :

Seule la modulation différentielle est pratiquement utilisable en transmission de données (la phase de la porteuse n’a pas besoin d’être connue).

Les propriétés sont similaires à la modulation de fréquence avec un spectre plus étroit autorisant un débit plus élevé. Pour limiter les erreurs, les états de phases seront régulièrement répartis sur $[0..2\pi]$. Dans la pratique on utilise des modulations à 2, 4 ou 8 états de phases (V22, V26, V27).

Exemple : Modulation V22 (1980) :

La modulation V22 permet, une transmission duplex à 1200 bit/s (600 bauds) sur le RTC. Les porteuses sont : appel = 1200Hz, réponse = 2400Hz. Un brouilleur a été introduit afin de limiter les erreurs dues à la distorsion de phase du réseau.
2.3.2 CAP - Carrier Amplitude Phase modulation :

Aussi appelé MAQ «Modulation d’Amplitudes en Quadrature». On utilise deux porteuses déphasées de $\pi/2$, chacune est modulée en amplitude par une partie du message (la moitié des bits). On obtient ainsi une constellation de points.


Exemple : Modulation V29 (1976)

La modulation V29 permet, une transmission à 9600 bit/s (2400 bauds, porteuse 1700 Hz) sur lignes louées 4 fils. Elle est de type MAQ16 et une égalisation auto-adaptative à été prévue. Cette modulation sera ensuite utilisée sur le RTC (en alternant) pour les télecopieurs groupe 3 (FAX).

Les données sont transmises par paquet de 4 bits, le bit Q1 détermine l’amplitude et les bits Q2, Q3, Q4 déterminent le changement de phase.

<table>
<thead>
<tr>
<th>Q1</th>
<th>Amplitude (0,90,180,270°)</th>
<th>Amplitude (45,135,225,315°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>$\sqrt{2}$</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>$3\sqrt{2}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Changement de phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0°</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45°</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>90°</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>135°</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>180°</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>225°</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>270°</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>315°</td>
</tr>
</tbody>
</table>

2.4 Transmission asymétrique sur RTC-RNIS

Sur un réseau numérisé (codage PCM-MIC), la conversion A/N introduit un bruit de quantification inévitable d’environ 33dB. Le débit sera donc limité (shannon) à moins de 34 000 bit/s lorsque les extrémités sont analogiques.

Si une des extrémité de la liaison est directement en numérique (RNIS), l’interface S ne contient pas de convertisseur A/N mais seulement un transcodage N/N émulant le fonctionnement du modem Vxx. La transmission de données de l’abonné RNIS vers l’abonné RTC ne comporte chez l’opérateur qu’un convertisseur N/A qui n’introduit pas de bruit de quantification. Dans ce sens de transmission, le rapport S/B pourra être supérieur à 45dB donc le débit possible plus important en synchronisant l’émission de l’interface S et la réception du modem.
Dans le sens Serveur → PC, on transmet par mots de 7 bits à 8 kHz (56 kbit/s), on obtient 128 niveaux de tensions analogiques en accord avec le codage PCM obtenu chez le récepteur RTC. Les 255 niveaux du codage PCM ne peuvent être utilisés car les plus fortes valeurs sont à éviter et les plus petites ne sont pas discernables du bruit. Une synchronisation émetteur de l’émulateur V90 et récepteur du modem V90 assure une bonne réception des échantillons que produit le convertisseur N/A du réseau. Dans la pratique on observe un débit variant de 40 à 52k selon la qualité de la liaison analogique.

Dans le sens PC → Serveur, le débit maximum sera celui du RTC (V34 = 33600 bit/s). La norme V92 prévoit, après une séquence de test du convertisseur A/N du commutateur, de faire monter ce débit à plus de 40 kbit/s.

L’UIT-T à normalisé la solution V90 en 1998, auparavant on trouvait sur le marché 2 solutions provisoires : X2 (US robotics/3 Com) et K56 flex (Rockwell-Lucent technology).

3 MODEMS NORMALISES

3.1 Particularités des Modems :

3.1.1 Brouilleur ("scrambling")

Objectif : Rendre les propriétés statistiques du signal émis identique à celles d’une suite aléatoire blanche.

Des suites binaires cycliques favorisent la formation de raies spectrales qu’il vaut mieux éviter. On utilise un polynôme diviseur normalisé à l’émission (avant modulation), le même polynôme à la réception permet de retrouver la suite de données initiales.

Exemple : Brouilleur du V22 (1980)
En V22, le polynôme est $1 + x^{-14} + x^{-17}$
Le polynôme peut être différent selon le canal : Exemple V32, V26ter
appel = 1 + x^{-18} + x^{-23}
réponse = 1 + x^{-5} + x^{-23}

3.1.2 **Egaliseur**

**Egaliseur** : Filtre (éventuellement numérique) destiné à inverser la fonction de transfert en fréquence de la ligne.

Dès que l’on veut dépasser 2400 bit/s sur une ligne RTC, le récepteur doit limiter ou corriger les distorsions introduites par la ligne. L’adaptation peut éventuellement être manuelle sur LS (temps de retournement du modem alors très court), mais doit être automatique sur RTC.

**Egalisation auto-adaptative** : Avant la transmission il y a une phase d’acquisition pendant laquelle la source émet une séquence connue, ensuite l’apprentissage est permanent afin de suivre les variations de la ligne.

3.1.3 **Annulateur d’écho**

Sur les lignes deux fils, il y a passage 2fils/4fils afin de constituer un circuit de transmission amplifiable ou numérisable. Les transformateurs utilisés ne sont pas parfaitement équilibrés et induisent des échos.

En parole, on limite l’effet de ces échos par des "suppresseurs d’échos" qui atténuent tout simplement le canal le plus faible.

En transmission de données, pour permettre le duplex, ces suppresseurs doivent être inhibés (par une fréquence de 2100 Hz en début de connexion). L’annulation d’écho, nécessaire pour les débits élevés, devra alors être effectuée aux extrémités. Une phase d’acquisition, lors de la connexion, permet d’identifier les échos. l’ANEC soustrait au signal reçu le signal émis et un dérivé de ce signal émis (échos).
3.1.4 Appels infructueux

Afin d’éviter d’importuner des clients de France Télécom en cas d’erreur de programmation de n° d’appel sur les modems à appel automatique, les spécifications 1257 de CNET sont obligatoires. Un numéro appelé sera "brûlé" si :
. L’appel de ce n° a été 6 fois infructueux (pas de porteuse),
. Il y a eu 2 tentatives infructueuses séparées de plus de 12 minutes

De plus, un n° infructueux ne peut être rappelé qu’après un délai de 1 minute. Le modem possède une table des n° brûlés (« blacklist »), lorsqu’elle est pleine la numérotation doit être bloquée.

Affichage des n° brûlés : AT&B, AT18 (USRobotics)

Certains modems possèdent une commande « Hayes » (non documentée) permettant d’effacer ou d’inhiber les n° brûlés. (exemple ATS40=2 pour certains USRobotics)

Une autre limitation est préconisée en France si le n° demandé est occupé : temporisation d’une minute avant de pouvoir rappeler et temporisation d’une heure après 5 tentatives infructueuses (appel d’un accès Internet encombré ...!). Cette limitation évite d’encombrer le réseau d’une signalisation inutile (appels…).

3.2 Commande des appels par la jonction :

3.2.1 Commandes V25bis

Les commandes de l’ETTD sont transmises à l’ETCD par le 103. Le 104 transmet les indications de l’ETCD (erreurs...), et éventuellement un écho des commandes.

108 (DTR)  
106 (CTS)  
109 (CD)  
107 (DSR)  

<table>
<thead>
<tr>
<th>Numérotation</th>
<th>Appel en cours</th>
<th>Prise de contact</th>
<th>Données…</th>
<th>Contrôle de flux</th>
</tr>
</thead>
</table>

Transmission asynchrone : Les messages sont transmis en ASCII (AI n°5) suivit de CR + LF (Carriage return - Line feed).
Transmission synchrone caractère : SYN,SYN,STX,message,ETX
Transmission synchrone bit : HDLC.

Liste des commandes : voir annexe.

**Exemple** : CRNP0:T3611  
Commande de numérotation (CRN), en impulsion (P) du 0 puis attente de tonalité (:) et en DTMF (T) du n° 3611.

### 3.2.2 Commandes HAYES (AT)

Conçues par “HAYES” (fabricant de modems), ces commandes, qui commencent toutes par AT (Attention), sont plus riches et plus utilisées que V25bis. Les commandes principales sont identiques pour tous les modems mais les spécificités de certains appareils nécessitent des commandes particulières et la définition des registres de configuration (registres S) peut varier d’un constructeur à l’autre.

L’UIT-T a normalisé le noyau principal de ces commandes en 1995 sous l’appellation **V25ter**.

**Exemple** : ATDP0WT3611  
Commande de numérotation (D), en impulsion (P) du 0 puis attente de tonalité (W) et en DTMF (T) du n° 3611.

### 3.3 Chronologie des normes :

Initialement, le CCITT publiait ses recommandations tous les 4 ans. Actuellement, l’UIT-T effectue ses publications au fur et à mesure de l’aboutissement des travaux.

**- 1964**

- V21 : RTC, 300 bit/s / 300 bauds, duplex, asynch., FM
  - appel     = 1080 Hz ± 100Hz ("0" = +100Hz) 
  - réponse   = 1750 Hz ± 100Hz 
  - similaire au BELL 103 (1170Hz et 2125Hz ± 100Hz)
- V23 : RTC, 1200 bit/s / 1200 bauds, alternat, asynch., FM
porteuse = 1700 Hz ± 400Hz ("0" = +400Hz)

voie de retour : 75 bit/s / 75 bauds, alternat, FM 420Hz ± 30Hz utilisé par le minitel (voie de retour pour minitel → serveur).
similaire au BELL 202 (1700 Hz ± 500 Hz)

- 1968
  ♦ V26 : LS 4 fils, 2400 bit/s / 1200 bauds, duplex, synch., DPH4
    porteuse = 1800 Hz
    voie de retour similaire V23 optionnelle.

- 1972
  ♦ V26bis : idem V26 pour RTC (en alternat)
  ♦ V27 : LS 2 fils, 4800 bit/s / 1600 bauds, alternat, synch., DPH8
    porteuse 1800 Hz, option retour V23 (75bit/s)
      *Brouilleur + égaliseur manuel.*

- 1976
  ♦ V27bis : idem V27 avec repli à 2400bit/s et *égaliseur auto-adaptatif.*
  ♦ V27ter : idem V27bis pour RTC.
  ♦ V29 : LS 4 fils, 9600 bit/s / 2400 bauds, duplex, synch., MAQ16

- 1980
  ♦ V22 : RTC, 1200 bit/s / 600 bauds, duplex, synch., DPH4
    porteuse appel = 1200Hz, réponse = 2400Hz
    repli en 600 bit/s / 600 bauds
    Brouilleur, égaliseur fixe, *télécommande de bouclage 2 et 3.*

- 1984
  ♦ V22bis : RTC, 2400 bit/s / 600 bauds, duplex, synch., MAQ16
    repli en 1200 bit/s, compatible V22, égaliseur adaptatif
    reconnaissance automatique du débit.
  ♦ V26ter : RTC, 2400 bit/s / 1200 bauds, duplex, synch., DPH4
    porteuse 1800Hz, repli 1200 bit/s, télébouclage 2 et 3, égaliseur,
    brouilleurs (différent pour appel et réponse)
      *Annulation d’écho auto-adaptative* (duplex sur une porteuse).
  ♦ V32 : RTC, 9600 bit/s / 2400 bauds, duplex, synch., MAQ4,16,32
    Porteuse 1800Hz, repli 4800 bit/s, compatible V26ter (option)
    brouilleurs idem V26ter, égaliseur, annulateur d’écho
      *Codage en treillis* (convolutionnel pour réduire les erreurs).

- 1988
  ♦ V33 : LS 4 fils, 14400 bit/s / 2400 bauds, duplex, synch., MAQ64-128
    porteuse 1800Hz, repli 12000 bit/s (MAQ64),
    brouilleur, codeur convolutionnel...
    Multiplexage possible (jusqu’à 6 fois 2400 bit/s)

- 1991
  ♦ V17 : Idem V33 pour télecopieurs G3 sur RTC à 14400 bit/s.
  ♦ V32bis : RTC, 14400 bit/s / 2400 bauds, duplex, synch., MAQ128
Débits possibles = 12000, 9600, 7200, 4800 bit/s.
"retraining" = négociation du débit en cours de transmission
Négociation du mode lors de la connexion (=8s).

- **1994**
  ♦ V34 : RTC, 28800 bit/s/….bauds, duplex, synch., MAQ
débits de 2400 à 28800 bit/s par pas de 2400 bit/s (qualité ligne)
6 vitesses de modulation possibles = 2400..3429 bauds
  Analyse spectrale de la ligne (0..3700Hz) pour choix porteuse
  9 porteuses possibles = 1600..2000Hz
  Négociation préalable : V8 à 300 bit/s (V21) (=5s)
  Annulation d’écho supportant deux bonds satellites.
  ♦ V8 : Procédures d’initialisation de la connexion.

- **1995**
  ♦ V25 ter : Normalisation des commandes AT (commandes « Hayes »).

- **1996**
  ♦ V34 corr. : Correctif au V34 pour débit de 33600 bit/s.
  ♦ V61 : Modems voix - données (4800 bit/s) simultanés.
    ASVD « Analog Simultaneous Voice and Data ».
    Données pouvant commuter en données seules à 14400 bit/s
  ♦ V70 : Modems voix numérisée - données simultanés.
    DSVD « Digital Simultaneous Voice and Data ».
  ♦ V75 : DSVD procédures de contrôle du terminal.

- **1998**
  ♦ V90 : Modem pour débit asymétrique de 56000 bit/s dans le sens abonné
    RNIS vers un abonné RTC et V34 33600 bit/s de l’abonné RTC vers abonné
    RNIS.

- **2000**
  ♦ V92 : Modem pour débit asymétrique de 56000 bit/s dans le sens abonné
    RNIS vers un abonné RTC et possibilité de canal montant (de l’abonné RTC
    vers abonné RNIS) jusqu’à 48kbit/s par trame modulée PCM à travers le
    convertisseur A/N + réduction à 10s du temps d’établissement et possibilité de
    suspendre la connexion pour prendre un appel téléphonique.
  ♦ V44 : Compression de données jusqu’à 6:1 (au lieu de 4:1 en V42).

## 4 QUALITE ET PERFORMANCE DES TRANSMISSIONS

### 4.1 Qualité des transmissions :

#### 4.1.1 Normes de qualité (V50,V53,V56)

Bruit impulsif :
Limite admissible = 70 pointes/heure sur LS, pas de limite sur RTC mais la mesure peut être intéressante.

Seuil d’une pointe de bruit = -21 dBm (-18 dBm sur RTC).

**Taux d’erreur sur bits** :

Un test BERT (Bit Error Rate Transfert) permet de s’assurer du maintien de la qualité des voies. La durée normalisée d’un test est de 15 minutes.

Taux maximums : <10^{-3} sur RTC et <5.10^{-5} sur LS

**Taux d’erreur sur blocs** :

La mesure (BLERT) est importante car la répartition des bits erronés influe considérablement sur le nombre de blocs (trames) perturbés. Cette mesure permet de définir la taille de trame optimale (meilleur rendement).

Exemple : des blocs de 512 bits à 1200bit/s sur RTC (BERT = 10^{-3}) peuvent donner un taux de rejet de blocs de 0.14% (bits erronés groupés) à 51% (bits erronés uniformément répartis).

### 4.1.2 Qualité des réseaux numériques

Le BERT étant alors peu significatif on a défini d’autres paramètres (voir cours RTC - rec. G821) :

- **SAE** : Seconde avec erreur,
- **SGE** : Seconde gravement erronée ( > 64 erreurs),
- **MD** : Minute dégradée ( > 4 erreurs).

### 4.1.3 Bouclages de test (V54)

**Boucle 1** : sur la jonction de l’ETTD, permet le test de cette jonction.

**Boucle 2** : Ce test vérifie l’état des deux modems et de la ligne téléphonique. Le test n’est généralement possible que si les deux modems utilisent le standard V.22 et permet la réalisation de BERT ou BLERT.

**Boucle 3** : bouclage analogique, sur la ligne du modem appelant, ce test permet de vérifier le fonctionnement de l’émetteur et du récepteur du modem. Il est conseillé de ne pas être en ligne.
Boucle 4 : Sur l’extrémité d’une ligne 4 fils à l’aide d’un boîtier de test, elle est réservée au fournisseur de la liaison pour assurer la maintenance de celle-ci.

Télécommande de boucle 2 :
- Manuelle par commutateurs sur la face avant du modem,
- Par la jonction (140),
- Par commande "Hayes" (AT&T2..)

Le modem émet ensuite une séquence particulière (voir V22, V22bis..) que le modem distant détecte et à laquelle il répond puis effectue le bouclage. Les tests peuvent alors avoir lieu. Une autre séquence permet l’interruption du bouclage.

4.2 Détection et correction d’erreurs :

La détection - correction d’erreur (niveau 2 OSI) peut être assurée par l’ETCD au lieu de l’ETTD. La première solution généralisée fut celle de "Microcom" MNP4 (Microcom Networking Protocol), l’UIT-T a ensuite définit le protocole V42 qui est plus performant et qui intègre MNP1..4 en annexe. Ces protocoles sont négociés après la prise de contact des modems (choix du mode...).

4.2.1 Protocole MNP4

◊ Dans le domaine public depuis 1985, intégré à V42 en annexe (MNP1..4).
◊ Transmission éventuellement asynchrone (MNP1/2), trame = [SYN, DLE, STX,"en tête", "données", DLE, ETX, CRC], CRC=1+x²+x¹⁵+x¹⁶.
◊ Transmission normalement synchrone par trame HDLC (MNP3) dont la longueur est variable (256..2048bits) selon la qualité de la ligne (MNP4).
◊ Correction par retransmission à partir de la trame erronée.

Prise de contact :
. L’appelant émet trame LR (Link Request) avec paramètres (taille bloc, nb trames en instance ...).
. L’appelé répond par trame LR et l’appelant confirme par trame LA (Link Acknowledge).

Transmission :
. Données émises dans des trames LT (Link Transfert) numérotées.
. Acquittement/Non acquittement des trames reçues par trame LA, il y aura ré-émission si le n° de LA est identique à celui de la trame LA précédente.

4.2.2 Protocole V42

◊ Transmission synchrone (après conversion asynchrone - synchrone si nécessaire) sur liens duplex.
◊ Trames de type HDLC-LAPM (High level Data Link Control - Link Access Protocol Modem) numérotées avec fenêtrage (fenêtre = 15 trames par défaut).
- Détection d’erreur par CRC (FCS) \((1+x^5+x^{12}+x^{16})\).
- Correction d’erreur par retransmission automatique à partir de la trame erronée.

**Prise de contact :**

⇒ L’appelant émet \([\text{DC1}, 8..16 "1", \text{DC1}, 8..16 "1" ...]\) jusqu’à réponse ou délai de 750ms. Test éventuel de l’alternative MNP4 ensuite.

⇒ L’appelé répond \(["E", 8..16 "1", "C", ...]\) si le V42 est souhaité ou \(["E", 8..16 "1", \text{NUL}, ...]\) si pas de correction d’erreur.

**Transmission :**

⇒ Données émises dans des trames I (Info) numérotées (NSend), tant que la fenêtre est ouverte.

⇒ Acquittement des trames reçues par indication du n° trame correcte (NReceive) dans le champ commande d’une trame émise de type I (info), RR ou RNR.

⇒ Rejet d’une trame (CRC incorrect) par indication du n° dans trame REJ ou SREJ. L’émetteur reprend l’émission à partir de la trame erronée.

<table>
<thead>
<tr>
<th>Fanion</th>
<th>Adresse</th>
<th>Commande</th>
<th>Informations......</th>
<th>CRC</th>
<th>Fanion</th>
</tr>
</thead>
<tbody>
<tr>
<td>01111110</td>
<td>1(2)</td>
<td>1/2</td>
<td>0…</td>
<td>2</td>
<td>1 octet</td>
</tr>
</tbody>
</table>

**Adresse :**

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCI</td>
<td>C/R</td>
<td>EA</td>
<td>Octet 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLCI</td>
<td>Octet 2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Commande :**

<table>
<thead>
<tr>
<th>Format</th>
<th>Commandes</th>
<th>Réponses</th>
<th>Codage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfert d’information</td>
<td>I (information)</td>
<td>N(S)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(R)</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>RR (prêt à recevoir)</td>
<td>RR (prêt à recevoir)</td>
<td>0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N(R)</td>
</tr>
<tr>
<td></td>
<td>RNR (non prêt à recevoir)</td>
<td>RNR (non prêt à recevoir)</td>
<td>0 0 0 0 0 1 0 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N(R)</td>
</tr>
<tr>
<td></td>
<td>REJ (rejet)</td>
<td>REJ (rejet)</td>
<td>0 0 0 0 1 0 0 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N(R)</td>
</tr>
<tr>
<td></td>
<td>SREJ (rejet sélectif)</td>
<td>SREJ (rejet sélectif)</td>
<td>0 0 0 0 1 1 0 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N(R)</td>
</tr>
</tbody>
</table>

**Non numéroté**

| SABME | 0 1 1 P 1 1 1 1 |
| DM | 0 0 0 F 1 1 1 1 |
| UI | 0 0 0 P/F 0 0 1 1 |
| DISC | 0 1 0 P 0 0 1 1 |
| UA | 0 1 1 F 0 0 1 1 |
| FRMR | 1 0 0 F 0 1 1 1 |
| XID | 1 0 1 0 1 1 1 1 |
| ESSAI | 1 1 1 0 0 0 1 1 |

N(S) : Numéro de la trame émise
N(R) : Numéro de la trame reçue
4.3 Compression des données :

Sur les modems, l’option compression des données permet d’augmenter le débit moyen à la jonction. Elle doit être effectuée avant brouillage ou cryptage car une série aléatoire est incompressible.

4.3.1 Catégories de compression

♦ compression avec pertes : Très performante (jusqu’à 3000), bien adaptée à l’audio et la vidéo en temps réel (JPEG, MPEG..). La décompression à la volée nécessite une puissance de calcul importante.

♦ compression sans pertes : solution universelle, la seule envisageable pour une transmission de données transparente.
  ▪ Compression après analyse : performante, adaptée à l’archivage.
  ▪ Compression à la volée : adaptée au temps réel (modem).

4.3.2 Techniques de compression

♦ codage RLE (Run Length Encoding) : Technique la plus simple et la plus ancienne. Un caractère répété \( n \) fois sera codé par 3 octets (Esc, \( n \), caractère). Adapté au textes et images, assez peu efficace.

♦ codage relatif : On ne transmet que les différences avec la séquence précédente.

♦ codage de Shannon (1948) et Huffmann (1952) : Codage probabiliste, chaque élément est codé selon sa probabilité, un élément courant sera codé sur peu de bits et un élément rare sur un mot plus long. La compression moyenne est de 30%.
  ▪ Encodage statique : le dictionnaire est défini une fois pour toute (fichiers, FAX...).
  ▪ Encodage dynamique : le dictionnaire évolue au fil et à mesure du flux de données à compresser, il s’adapte donc à n’importe quel type d’information et autorise le temps réel (transmission de données).

♦ codage LZW (Lempel Ziv Welch - 1984) : Codage très efficace, un dictionnaire est construit dynamiquement à partir des séquences du message. Dès qu’une séquence appartenant au dictionnaire réapparaît on transmet l’index. Le dictionnaire sera de taille limitée et donc l’index fera en général de 9 à 15 bits.

Les logiciels de compression de fichiers (ARJ, LHA, PKZIP, GZIP… pour les plus célèbres) utilisent plusieurs procédés (LZW, Huffman, RLE...) choisis automatiquement, après analyse, selon le type de données du fichier. Compression efficace (\( \eta \) 80%).

4.3.3 Compression dans les modems

♦ MNP5 : La première technique apparue dans les modems. Codage RLE (10..20%) ou Huffman adaptatif (\( \eta \) 50% = 2:1) selon le type d’information. Effet négatif sur les données déjà compressées !
♦ MNP7 : MNP5 + compression diatomique (codage probabiliste sur paires de caractères) ($\eta$ 70% = 3:1). Peu implanté.

♦ V42 bis : La solution la plus efficace ($\eta$ 75% = 4:1), d’origine IBM + British Telecom. Codage LZW, sans effet sur les données déjà compressées.


4.3.4 Débit réel sur la jonction

Pour un modem externe sur une jonction V24/V28, la transmission se fait en asynchrone (1 bit de « start », 8 bits de données, pas de parité, 1 bit de stop). Chaque octet de données nécessite donc 10 bits sur la jonction.

Sur la ligne de transmission, un modem pourra émettre par exemple à 33600 bit/s synchrone, donc sans les bits de « start » et stop. De plus il utilisera généralement la détection / correction de données V42 qui nécessite l’ajout de quelques octets (mise en trame, CRC…). La compression de données V42bis sera aussi souvent mise en œuvre. Pour utiliser au maximum le débit en ligne du modem, il faudra donc un débit sur la jonction nettement supérieur !

Exemple de calcul :

- Débit en ligne V34 : \textbf{33600 bit/s}
- Compression V42bis, estimation $\eta = 60\%$ (100 octets donnent 40 octets transmis)
- Protocole V42 : ajout estimé de 7\% (mise en trame…)

$\Rightarrow$ Le débit en ligne (données compressées + 7\% V42) est de 33600, donc le débit utile pour les données compressées est $33600 / 1.07 = 31400$ bit/s
$\Rightarrow$ Avec la compression il est nécessaire de fournir 31400 * 100 / 40 = 78500 bit/s soit 9812,5 octets/s
$\Rightarrow$ La jonction étant asynchrone il faut ajouter 2 bits à chaque octets, le débit nécessaire en ligne sera donc de 98125 bit/s. Le débit de la jonction doit donc être réglé sur \textbf{115200 bit/s} ! (le modem effectuera un contrôle de flux à l’aide de CTS si nécessaire)

5 ANNEXES
5.1 Commandes V25bis

V25bis : Codage des commandes et des indications

<table>
<thead>
<tr>
<th>Commande/indication</th>
<th>Caractères de l'AI n° 5</th>
<th>Format de paramètre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demande d'appel complétée par :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>le numéro</td>
<td>CRN CRN</td>
<td>Numéro à composer</td>
</tr>
<tr>
<td>le numéro et numéro d'identification :</td>
<td>CRI CRI</td>
<td>Numéro d'identification</td>
</tr>
<tr>
<td>l'adresse de la mémoire:</td>
<td>CRS CRS</td>
<td>Adresse en mémoire</td>
</tr>
<tr>
<td>Programmaton:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normale:</td>
<td>PRN PRN</td>
<td>Numéro à composer</td>
</tr>
<tr>
<td>identification:</td>
<td>PRI PRI</td>
<td>Numéro d'identification</td>
</tr>
<tr>
<td>Demande d'énumération:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>des numéros en mémoire:</td>
<td>RLN RLN</td>
<td>Pour complément d'étude</td>
</tr>
<tr>
<td>des numéros interdits:</td>
<td>RLF RLF</td>
<td>Pour complément d'étude</td>
</tr>
<tr>
<td>des numéros en appel retardé:</td>
<td>RLD RLD</td>
<td>Pour complément d'étude</td>
</tr>
<tr>
<td>des numéros d'identification:</td>
<td>RLI RLI</td>
<td></td>
</tr>
<tr>
<td>Mise en instance de l'appel entrant:</td>
<td>DIC DIC</td>
<td></td>
</tr>
<tr>
<td>Acceptation de l'appel entrant:</td>
<td>CIC CIC</td>
<td></td>
</tr>
<tr>
<td>Appel abandonné:</td>
<td>CFI CFI</td>
<td>Type d'échec</td>
</tr>
<tr>
<td>Appel retardé:</td>
<td>DLC DLC</td>
<td>Durée (en minutes)</td>
</tr>
<tr>
<td>Appel entrant:</td>
<td>INC INC</td>
<td></td>
</tr>
<tr>
<td>Valable:</td>
<td>VAL VAL</td>
<td></td>
</tr>
<tr>
<td>Non valable:</td>
<td>INV INV</td>
<td>Type d'erreur (facultatif)</td>
</tr>
<tr>
<td>Enumération:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>des numéros en mémoire:</td>
<td>LSN LSN</td>
<td>Adresse en Mémoire</td>
</tr>
<tr>
<td>des numéros interdits:</td>
<td>LSF LSF</td>
<td>Numéro à composer</td>
</tr>
<tr>
<td>des numéros appel retardé:</td>
<td>LSD LSD</td>
<td>Numéro d'identification</td>
</tr>
<tr>
<td>du numéro d'identification:</td>
<td>LSI LSI</td>
<td>Numéro d'identification</td>
</tr>
<tr>
<td>Etablissement de la communication:</td>
<td>CNX CNX</td>
<td>ZZZ….Z (pour complément d'étude)</td>
</tr>
</tbody>
</table>

Remarque - Quand la commande de demande d'énumération appelle l'édition d'une énumération vide, une indication «énumération dépourvue de paramètres» peut être émise.

Fascicule VIII. 1 - Rec. V.25 bis
5.2 Commandes HAYES (V25ter)

Tous les modems commercialisés actuellement sont compatibles avec le langage de commandes initié par le fabricant « Hayes » et dont la partie principale a été normalisée sous la référence V25ter puis V250.

Un modem est en attente de commande dès sa mise sous tension (106 haut mais 109 bas), celles-ci sont transmises par le circuit de données (103/104). Il est possible de suspendre une connexion établie pour envoyer des commandes au modem en utilisant la séquence d’échappement : « pause 1s » +++ « pause 1s », retour en transmission par ATO. Toutes les commandes commencent par la séquence AT à l’exception de la séquence d’échappement et de la commande A/ (répétition de la dernière commande) et A> (répétition de la dernière commande sans arrêt). Plusieurs commandes peuvent être effectuées dans une même séquence (début de la ligne par AT et fin par un retour chariot).

**Remarque** : Toutes les commandes citées ne sont pas disponibles sur tous les modems et toutes les commandes disponibles ne sont pas citées (consulter les manuels des modems, la référence utilisée est celle des modems USRobotics/3COM).

**Commandes « HAYES »**

A  Place le modem en mode réponse hors connexion (réponse manuelle).
B  Sélection des séquences de réponses :
    B0 = réponses UIT-T
    B1 = réponses Bell (US)
D  Commande de numérotation avec les options :
    0...9 et #* : chiffres à numéroter
    P : numérotation en impulsion
    T : numérotation par fréquences vocales (DTMF)
    W : attente de tonalité (pour sortie d’un PABX)
    Sn : Composition du n° en mémoire n (voir AT&Z)
        , : pause de 2 secondes.
        @ : attente d’un silence de 5s (fin de message enregistré…)
        ; : retour au mode commande après numérotation
    DL : Remumérotation du dernier numéro composé (DL ? affichage dernier n° composé)
    En : Echo local des commandes (n=0 echo OFF, n=1 echo ON)
    Fn : Echo local des données transmises (n=0 echo ON, n=1 echo OFF)
    Hn : Prise de ligne (n=0 Raccroche, n=1 Décroche)
    In : Informations sur le modem
        I0 : code du modem
        I… : selon modem (type, configuration, paramètres mémorisés…)
    Ln : Volume du haut-parleur (n=0 faible…, n=3 fort)
    Mn : Activation – désactivation du haut-parleur
        M0 : désactivé
        M1 : activé jusqu’a réception de la porteuse
        M2 : toujours activé
        M3 : activé après numérotation jusqu’a connexion.
    N : Connexion au débit mémorisé (N1 : au plus haut débit possible)
    On : Reprise de ligne (n=0 reprise, n=1 reprise avec réinitialisation)
    P : Numérotation décimale en standard
    Qn : Affichage des codes de résultat (n=0 numériques, n=1 texte)
    Sn : Affichage des codes de résultat (n=0 actif, n=1 inactif, n=2 actif en émission)
    Sr : Registres du modem (n° r) :
        Sr? : affiche le contenu du registre r
        Sr=n : Donne la valeur n au registre r
    S$ : affiche la liste des registres
    T : Numérotation en fréquences vocales en standard
    Vn : Type des codes résultats (n=0 numériques, n=1 texte)
    Xn : Codes de résultat affichables (n=0 mini … n=4 maxi)
    Yn : Configuration par défaut si réinitialisation
    Z : Réinitialisation du modem
        Z0 : réinitialisation selon profil défini par Y…
&$ liste des commandes &
&Bn Débit du port série (n=0 variable selon connexion, n=1 fixe)
&Cn Contrôle du signal CD (109) (n=0 tjs actif, n=1 fonctionnement normal)
&Dn Contrôle du signal DTR (108)
\ D0 : DTR toujours actif
\ D1 : DTR basculé active le mode commande en ligne
\ D2 : DTR normal
\ D3 : Réinitialisation si DTR passe Off
&Fn Charge une configuration usine (n=0 modèle générique …)
&Gn Définit la tonalité de garde (n=0 Off, n=1 550Hz, n=2 1800Hz)
&Hn Contrôle de flux émission (n=0 désactivé, n=1 matériel, n=2 Xon/Xoff, n=3 1+2)
&In Contrôle de flux réception (n=0 désactivé, n=1 Xon/Xoff émis au distant, n=2 Xon/Xoff au modem)
&Kn Compression de données (contrôle de flux sur certains modems) (n=0 désactivé, n=1 automatique, n=2 activé, n=3 MNP5 désactivé)
&Mn Contrôle d’erreur (ARQ) (n=0 désactivé, n=4 auto, n=5 ARQ)
&Un Vitesse de connexion maximale (n=0 pas de restriction, n=1 300bit/s…)
&Pn Numérotation par impulsion, rapport du signal (n=0 39/61%, n=1 33/67%)
&Qn Sélection du mode (async., sync, erreur…)
&Rn Contrôle de flux matériel (n=1 modem ignore RTS, n=2 modem envoie les données reçues si RTS actif)
&Ss Contrôle du DSR (n=0 DSR toujours actif, n=1 modem contrôle DSR)
&Tn Modes de test (0..8)
&W Enregistre la configuration en mémoire (&Wn profil n° n)
&Z Numéros mémorisés
\ Z? affiche les n° en mémoire
&Zn=s Enregistre à la position n le n° s
\XX Gestion des protocoles MNP … (anciens modems)
%XX Spécificités du modem (configuration, sécurité…)

Registres S

S0 Nombre de sonneries avant réponse automatique (0 = mode Off)
S1 Compteur de sonnerie
S2 Code du caractère d’échappement (‘+’ = 43)
S3 Code du caractère « retour chariot » (13)
S4 Code du caractère « saut de ligne » (10)
S5 Code du caractère « retour arrière » (8)
S6 Temporisation avant numérotation (2s par défaut)
S7 Délai d’attente de porteuse (60s par défaut en général)
S8 Durée de la commande pause (.) (2s par défaut)
S9 Durée pour validation de la porteuse du distant (6 dixième de s habituellement)
S10 Durée de perte porteuse entraînant la déconnexion (7 dixième de s habituellement)
S11 Durée émission et silence en numérotation DTMF (70ms)
S12 Durée (en nb de fois 20ms : 50 pour 1s) du temps de garde avant l’échappement (+++)

LESCOP Yves [v 2.3] - 20/22 - Post BTS R2i
5.3 Séries V

Liste des Recommandations UIT-T Série -V en vigueur (10/00) ([www.itu.int](http://www.itu.int))

- **[V.1]** - Correspondance entre les symboles du calcul binaire et les états significatifs d'un code bivalent
- **[V.2]** - Niveaux de puissance pour la transmission de données sur des circuits téléphoniques
- **[V.4]** - Structure générale des signaux du code pour l'Alphabet international no 5 destiné à la transmission de données orientée
  - caractères sur le réseau téléphonique public
- **[V.7]** - Définitions des termes relatifs aux communications de données sur le réseau téléphonique
- **[V.8]** (02/98) - Procédures de démarrage des sessions de transmission de données sur le réseau téléphonique public commuté
- **[V.8 bis]** (09/98) - Procédures d'identification et de sélection des modes de fonctionnement communs entre ETCD et entre ETTD sur le réseau téléphonique public commuté et sur les circuits loués point à point de type téléphonique
- **[V.10]** - Caractéristiques électriques des circuits de jonction dissymétriques à double courant fonctionnant à des débits binaires nominaux jusqu'à 100 kbit/s
- **[V.11]** (10/96) - Caractéristiques électriques des circuits de jonction symétriques à double courant fonctionnant à des débits binaires jusqu'à 10 Mbit/s
- **[V.12]** - Caractéristiques électriques des circuits de jonction symétriques à double courant fonctionnant à des débits binaires inférieurs ou égaux à 52 Mbit/s
- **[V.13]** - Commande de porteuré simulée
- **[V.14]** - Transmission de caractères arythmiques dur des voies supports synchrones
- **[V.15]** - Utilisation de coupleurs acoustiques pour la transmission de données
- **[V.16]** - Modems pour transmission de données analogiques médicales
- **[V.17]** - Modem à 2 fils pour les applications de télécopie à des débits binaires allant jusqu'à 14 400 bit/s
- **[V.18]** (02/98) - Caractéristiques d'exploitation et d'interfonctionnement des ETCD fonctionnant en mode textophone
- **[V.19]** - Modem pour transmission parallèle de données utilisant les fréquences de signalisation des postes téléphoniques
- **[V.21]** - Modem à 300 bit/s duplex normalisé pour usage sur le réseau téléphonique général avec commutation
- **[V.22]** - Modem fonctionnant en duplex à 1200 bit/s, normalisé pour usage sur le réseau téléphonique général avec commutation et sur les circuits loués à deux fils de type téléphonique de poste à poste
- **[V.22 bis]** - Modem fonctionnant en duplex à 2400 bit/s, utilisant la technique de la répartition en fréquence et normalisé pour usage sur le réseau téléphonique général avec commutation et sur circuits loués à deux fils
- **[V.23]** - Modem à 600/1200 bauds normalisé pour usage sur le réseau téléphonique général avec commutation
- **[V.24]** (10/96) - Liste des définitions des circuits de jonction entre l'équipement terminal de traitement de données et l'équipement de terminaison du circuit de données
- **[V.25]** (10/96) - Equipement de réponse automatique et procédures générales pour équipement automatique en mode parallèle sur le réseau téléphonique général commuté, y compris les procédures de neutralisation des dispositifs de réduction d'écho
- **[V.25 bis]** (10/96) - Procédures synchrones et asynchrones de numérotation automatique sur les réseaux commutés
- **[V.25ter]** (07/97) = [V.250] - Commande et numérotation automatique asynchrones en série
- **[Supp. V.25ter]** (04/95) - Commande et numérotation automatique asynchrones en série
- **[V.26]** - Modem à 2400 bit/s normalisé pour usage sur circuits loués à quatre fils
- **[V.26 bis]** - Modem à 2400/1200 bit/s normalisé pour usage sur le réseau téléphonique général avec commutation
- **[V.26ter]** - Modem fonctionnant en duplex à 2400 bit/s, utilisant la technique de la compensation d'écho et normalisé pour usage sur le réseau téléphonique général avec commutation et sur circuits loués à deux fils du type téléphonique
- **[V.27]** - Modem à 4800 bit/s avec égaliseur à réglage manuel normalisé pour usage sur circuits loués de type téléphonique
- **[V.27 bis]** - Modem normalisé à 4800/2400 bit/s avec égalisation automatique destiné aux circuits loués de type téléphonique
- **[V.27ter]** - Modem normalisé à 4800/2400 bit/s destiné au réseau téléphonique général avec commutation
- **[V.28]** (03/93) - Caractéristiques électriques des circuits de jonction dissymétriques pour transmission par double courant
- **[V.29]** - Modem à 9600 bit/s normalisé pour usage sur circuits loués à quatre fils poste à poste, de type téléphonique
- **[V.31]** - Caractéristiques électriques des circuits de jonction pour transmission par simple courant commandés par fermeture de contact
- **[V.31 bis]** - Caractéristiques électriques des circuits de jonction pour transmission par simple courant utilisant des coupleurs optoélectroniques
- **[V.32]** - Famille de modems à deux fils fonctionnant en duplex à des débits binaires allant jusqu'à 9600 bit/s pour usage sur le réseau téléphonique général avec commutation et sur les circuits loués de type téléphonique
[V.32 bis] - Modem fonctionnant en mode duplex à débits binaires allant jusqu'à 14 400 bit/s pour usage sur le réseau téléphonique général avec commutation et sur les circuits à 2 fils de type téléphonique loués de poste à poste

[V.33] - Modem à 14400 bit/s normalisé pour usage sur circuits loués à quatre fils posté à poste, de type téléphonique

[V.34] (02/98) - Modem fonctionnant à des débits allant jusqu'à 33 600 bit/s pour usage sur le réseau téléphonique général commuté et sur les circuits loués point à point à 2 fils de type téléphonique

[V.36] - Modems pour transmission synchrone de données sur circuits utilisant la largeur de bande du groupe primaire (60 à 108 kHz)

[V.37] - Transmission synchrone de données à un débit binaire supérieur à 72 kbit/s sur circuit utilisant la largeur de bande du groupe primaire (60 à 108 kHz)

[V.38] (10/96) - Équipement de terminaison de circuit de données normalisé à 48/56/64 kbit/s pour utilisation sur des circuits numériques loués de point à point

[V.41] - Système de protection contre les erreurs indépendant du code utilisé

[V.42] (10/96) -Procédures de correction d'erreur pour les équipements de terminaison de circuits de données utilisant la conversion asynchrone/synchrone

[V.42 bis] - Procédures de compression des données pour les équipements de terminaison du circuit de données (ETCD) utilisant des procédures de correction d'erreur

[V.43] (02/98) - Commande du flux de données

[V.50] - Normes limites de qualité de transmission pour les transmissions de données

[V.51] (11/88) - (voir Rec. M.729)

[V.53] - Caractéristiques limites pour la maintenance des circuits de type téléphonique utilisés pour la transmission de données

[V.54] - Dispositifs d'essai en boucle pour les modems

[V.55] (11/88) - (voir Rec. O.71)

[V.56] - Essais comparatifs des modems destinés à être utilisés sur des circuits de type téléphonique

[V.56 bis] (08/95) - Modèle de réseau de transmission pour l'évaluation de la qualité de fonctionnement des modems sur des connexions de qualité téléphonique à 2 fils

[V.56 ter] (08/96) - Procédure d'essai pour l'évaluation des modems duplex à deux fils fonctionnant à 4 kHz dans la bande vocale

[V.58] (09/94) - Modèle d'information de gestion pour les équipements de terminaison du circuit de données de la série V

[V.61] (08/96) - Modem pour voix plus données simultanées fonctionnant à un débit voix plus données de 4800 bit/s avec commutation automatique optionnelle à des débits de données uniquement allant jusqu'à 14 400 bit/s, à utiliser sur le réseau téléphonique

[V.70] (08/96) - Procédures pour la transmission simultanée de données et de signaux vocaux à codage numérique sur le réseau téléphonique général commuté, ou sur des circuits téléphoniques à deux fils point à point loués

[V.75] (08/96) - Procédures de commande du terminal DSVD

[V.75 App] (Appendice II) (02/98) - Procédures de commande du terminal DSVD: Etablissement de session par les procédures V.75/H.245

[V.76] (08/96) - Multiplexeur générique utilisant les procédures basées LAPM de la Recommandation V.42

[V.80] (08/96) - Commande d'équipements ETCD dans la bande et modes synchrones de données pour équipements ETTD asynchrones

[V.90] (09/98) - Paire modem numérique - modem analogique destinée à être utilisée sur le réseau téléphonique public commuté à des débits allant jusqu'à 56 000 bit/s vers l'avant et 33 600 bit/s vers l'amont

[V.91] (05/99) - Modem numérique destiné à être utilisé sur une connexion 4 fils commutée ou louée à des débits allant jusqu'à 64 000 bit/s.

[V.100] - Interconnexion entre réseaux publics pour données (RDP) et réseau téléphonique public commuté (RTPC)

[V.110] (02/00) - Prise en charge par un RNIS d'équipements terminaux de traitement de données munis d'interfaces du type défini dans les Recommandations de la série V

[V.120] (10/96) - Prise en charge par un RNIS d'un équipement terminal de traitement de données muni d'interfaces de type série V permettant un multiplexage statistique

[V.130] (08/95) - Paradigme d'adaptateur de terminal RNIS

[V.140] (02/98) - Procédures d'établissement d'une communication entre deux terminaux audiovisuels multiprotocoles sur des canaux à un débit multiple de 64 ou 56 kbit/s

[V.230] - Interface général pour communications de données - spécification de la couche 1

[V.250] (05/99) - Commande et numérotation automatique asynchrones en série

[V.251] (02/98) = V25ter annexe – Procédure de négociation d'appel commandée par l'ETTD.

[V.252] (02/98) - Procédure de commande des terminaux V.70 et H.324 par un ETTD

[V.253] (02/98) - Commande de fonctions vocales d'un ETCD par un ETTD asynchrone

[V.300] (07/99) - Équipement de terminaison d’un circuit de données à 128 (144) kbit/s pour liaison numérique point à point louée.