RÉSEAU TÉLÉPHONIQUE COMMUTÉ

1 HISTORIQUE DES TÉLÉCOMMUNICATIONS...2
 1.1 TÉLÉGRAPHE ÀERIEN ...2
 1.2 TÉLÉGRAPHE ÉLECTRIQUE ..2
 1.3 Téléphonie...2

2 STRUCTURE DU R.T.C. ..3
 2.1 TERMINAL D’ABONNÉ ...3
 2.2 INSTALLATION INTÉRIEURE ..4
 2.3 LIGNE D’ABONNÉ ...5
 2.4 BOUCLE LOCALE RADIO ..7
 2.5 COMMUTATION ..7
 2.6 STRUCTURE DU RÉSEAU ... 8
 2.7 MULTIPLEXAGE ..8
 2.8 SYNCHRONISATION DU RÉSEAU ..11
 2.9 DIMENSIONNEMENT D’UN ACCÈS ... 11

3 SIGNALISATION ET TAXATION DE L’ABONNÉ ..14
 3.1 SIGNALISATION CHEZ L’ABONNÉ ... 14
 3.2 SIGNALISATION DANS LE RÉSEAU ... 15
 3.3 PLAN DE NUMÉROTATION ...16
 3.4 TARIFICATION ..17

4 INTERFACE TÉLÉPHONIQUE ..18
 4.1 COFIDEC (CODEUR-FILTRE-DÉCODEUR) ...18
 4.2 COMPRESSION LOGARITHMIQUE ... 19

5 DÉFAUTS DU RÉSEAU...21
 5.1 AFFAIBLISSEMENT ...21
 5.2 DISTORSION DE PHASE ... 21
 5.3 BRUIT, DIAPHONIE ... 22
 5.4 ÉCHO ... 22
 5.5 QUALITÉ DU RÉSEAU NUMÉRIQUE .. 22

6 SERVICES SUR RTC ...23
 6.1 SERVICES AUX ENTREPRISES ... 23
 6.2 SERVICES AUX PARTICULIERS .. 24
 6.3 SERVICES NOUVEAUX OU ATTENDUS .. 25
 6.4 ANNUAIRES .. 25
 6.5 QUELQUES SITES ... 25
1 HISTORIQUE DES TÉLÉCOMMUNICATIONS

1.1 Télégraphe aérien

Le télégraphe des frères CHAPPE à permis la première liaison (PARIS-LILLE) en 1794. Chaque station est composé d’une tour sémaphore équipée de bras oscillants pour émettre le message et d’une lunette pour lire le précédent. Les tours sont espacées de 8 à 10 km.

En 1844, le réseau français comporte 5000 km de liaisons réalisées à l’aide de 533 stations. Un message peut être relayé en quelques heures mais seulement de jour et le duplex est impossible.

1.2 Télégraphe électrique

Avec la pile de Volta (1800) et l’électro-aimant de Sturgeon (1824) Gauss et Weber mettent au point le premier télégraphe utilisable (à galvanomètre). Le télégraphe permet la transmission de texte seulement, l’alternat est possible.

◊ 1836 : premier télégraphe véritable (électroaimant) par Morse,
◊ 1844 : première ligne type Morse Baltimore-Washington (70 km),
◊ 1845 : première ligne en France,
◊ 1851 : première traversée de la manche grâce au latex "Gutta-percha",
◊ 1866 : première traversée de l’atlantique (15 signaux / s !),

1.3 Téléphonie

◊ 1854 : Découverte du principe par Charles Bourseul,
◊ 1876 : Mise au point du premier téléphone par Alexander Graham Bell,
◊ 1880 : La société générale du téléphone installe les premiers réseaux français (Le havre, Lyon, Marseille, Bordeaux)
◊ 1883 : L’administration des Postes et Télégraphes réalise ses premiers réseaux (Reims, Roubaix),
◊ La prolifération anarchique des liaisons privées et l’étanchéité des divers réseaux conduisent au monopole des PTT.
◊ 1886 : Liaison Paris-Bruxelles,
◊ 1905 : Première liaison "pupinisée" enterrée NewYork-Washington (337km) par A.T.T.
1956 : Création du CCITT à Genève (fusion téléphone-télégraphe),
1970 : Premiers commutateurs numériques (commutation temporelle),
1976 : Signalisation par canal sémaphore (CCITT n°7),
1980 : Etude du numérique de bout en bout,
1985 : Synchronisation du réseau (horloges atomiques), n° à 8 chiffres,
1986 : TRANSCOM liaisons 64k commutées,
1987 : Début du RNIS (Lannion et Rennes),
1995 : Le réseau français est entièrement numérisé (transport et commutation).
1996 : Numérotation à 10 chiffres.

2 STRUCTURE DU R.T.C.

2.1 Terminal d'abonné

Le spectre de la voix humaine possède l'allure suivante :

Le signal transmis devra être analogique, dans la bande 300-3400Hz et d'une amplitude maximum de 0dBm (1mW). L'impédance de la ligne est d'environ 600Ω à 800Hz.

On appelle terminal ou équipement d'extrémité tout équipement qui se trouve au bout de la ligne d'abonné.

Poste téléphonique :
◊ - dispositif anti-local par montage en pont,
◊ - sonnerie via C=2µF court-circuitée par K3 pendant la numérotation.

Schéma d'un poste analogique type S63 :
2.2 **Installation intérieure**

Les distances recommandées et le câble conseillé (278.4.6 = câble 4 paires 0,6mm) permettront de conserver le câblage si l’abonné évolue vers le RNIS (Réseau Numérique à Intégration de Services).

Du câble à 4 paires

Câble de type PTT à 8 fils de diamètre 6/10, gaines couleur ivoire. Les câbles de modèle anoxien (4 fils, 3 fils) ne permettent pas de réaliser des installations conformes.

Le code des couleurs des conducteurs isolés au polyéthylène constituant ce câble est donné ci-contre.

Les numéros de 1 à 8 indiqués correspondent aux numéros des plots sur la prise.

Les 4 paires seront raccordées sur une prise 8 plots spécifique à la France, elle permettent le raccordement éventuel de 2 lignes sur une même prise.

Le module RC qui doit être branché en tête de ligne entre les plots 1-3-5 permet à France Télécom de tester la ligne d’abonné (en cas de dérangement) et de simuler la sonnerie par un condensateur en cas de débranchement du poste. Une sonnerie électromagnétique supplémentaire sera branchée entre 1 et 5 (après déplacement d’un strap interne au poste) et le plot 2 pourra être relié au point interne 15 du poste afin d’éviter le tintement des sonneries lors d’une numérotation décimale.
2.3 Ligne d’abonné

La ligne d’abonné est constituée d’une paire de cuivre continue de diamètre 0,4 à 0,8mm jusqu’au commutateur de rattachement. La plupart des abonnés ont une ligne inférieure à 4 km. L’abonné est relié à un point de concentration (zone rurale) ou directement à un sous-répartiteur par un câble aérien ou souterrain d’une ou deux paires (deux dans les nouvelles installations) puis par un câble de transport multipaires jusqu’à son commutateur de rattachement.
Câble abonné :
- aérien 5/9 = 1 paire 0,74mm - 0,96dB/km
- aérien 5/10 = 2 paires 0,8mm - 0,8dB/km
- souterrain 92/2/6 = 2 paires 0,6mm - 1,04dB/km
- souterrain 92/2/8 = 2 paires 0,8mm - 0,8dB/km.

Passage 2fils/4fils :

Pour pouvoir transporter sur grande distance (amplification, numérisation ...) il est nécessaire de séparer le signal émis du signal reçu. Cette séparation sera réalisée par un transfo hybride ou différentiel, on parle alors de "circuit" de transmission.

La séparation n'étant jamais parfaite un écho à lieu. Celui-ci étant particulièrement gênant dans les liaisons très longues on a installé des suppresseurs d'écho qui fonctionnent en atténuant fortement le canal dont le signal est le plus faible (idem système "main libre" sur certains terminaux) et interdisent alors un fonctionnement duplex (inutile en "parole" !)
2.4 Boucle Locale Radio

A partir de 2001, plusieurs opérateurs pourront utiliser des fréquences radios qui ont été libérées pour permettre le raccordement d’abonné par liaison radio.

Les Fréquences libérées sont 3,5GHz (zone rurale, portée environ 15km) et 26GHz.

Les opérateurs pourront offrir des liaisons n.64kbit/s ou n.2Mbit/s (en pratique on trouvera 64kbit/s, 512kbit/s et 1Mbit/s).

2.5 Commutation

2.5.1 Rôle d’un commutateur

- aiguiller les communications (commutation de circuits)
- concentrer le trafic
- taxer l’abonné
- surveiller la communication
2.5.2 *Familles de commutateurs*

- Rotatifs (rotary ...) abandonnés en 1960,
- Electromécaniques (crossbar),
- Electroniques :
 - commutation spatiale (physique et permanente),
 - commutation temporelle (numérique), les seuls actuellement

2.6 *Structure du réseau*

Un commutateur local gère de 100 à 5000 abonnés situés à moins de 10 km. Un commutateur à autonomie d’acheminement (CAA) autorise jusqu’à 50 000 connexions. Dans les grandes agglomérations, les CAA peuvent être directement reliés entre eux. En région parisienne, les CAA deviennent des commutateurs urbains (70% du trafic entre CU !). L’interconnexion des commutateurs, jusqu’à présent réalisée par câblage coaxial avec secours par faisceau hertzien, sera à terme réalisée par fibre optique avec sécurisation par bouclage.

2.7 *Multiplexage*

Pour mieux assurer le transport des communications entre commutateurs on multiplexe les canaux que l’on transporte ensuite sur des supports à bande passante élevée (faisceaux hertziens, câbles coaxiaux, fibres optiques).

2.7.1 *Multiplexage analogique*

Ce multiplexage est dit "à courant porteurs". chaque canal analogique 300-3400Hz est modulé en BLU sur des porteuses séparées de 4KHz.
Groupe primaire :
 A = 12 canaux --> 12..60kHZ [48kHz] en BLU inférieure
 B = 12 canaux --> 60..108kHz [48kHz] en BLU supérieure
Groupe secondaire :
 5 groupes primaires (60 canaux) --> 312..552kHz en BLU inférieure
Groupe tertiaire :
 5 groupes secondaires (300 canaux) --> 812..2044kHz
Groupe quaternaire :
 3 groupes tertiaires (900 canaux) --> 8516..12388kHz

2.7.2 Multiplexage numérique

MIC CEPT :
C’est le premier niveau de multiplexage, il est constitué de 32 canaux à 64000 bit/s (30 voies + 1 signalisation + 1 synchro). Une trame MIC dure 125 µS, elle se compose d’un octet de synchro, de 15 octets représentant les voies 1..15, d’un octet de signalisation et de 15 octets pour les voies 16..30. Ce niveau de multiplexage peut être fourni à l’abonné (raccordement de PABX). L’accès primaire RNIS (30B+D) est physiquement identique.

Multiplexage plésiochrone (G702):
Technologie dite PDH (Plesiochronous digital hierarchy). D’un niveau de multiplex à l’autre, une marge est ajoutée afin de compenser les décalages de rythme des horloges. L’extraction d’une voie d’un multiplex haut débit nécessite le démultiplexage complet. Cette technologie est encore très présente au niveau du réseau de transport d’accès.
⇒ TN1 = 32x64 = 2048 kbit/s
⇒ TN2 = 4x2048 + 256 = 8448 kbit/s
⇒ TN3 = 4x8448 + 576 = 34368 kbit/s
⇒ TN4 = 4x34368 + 1792 = 139264 kbit/s
Un niveau 4xT4 = 565 Mbit/s se rencontre parfois.

En Amérique du nord, les niveaux de multiplex sont différents, le premier niveau (canal T1 de BELL) comporte 24 voies codées sur 7 bits + 1 bit de signalisation. La trame est de (24x8)+1 = 193 bits en 125 µs (1544 kbit/s). Pour le RNIS T1 devient 23B+D.

T1 = 1,544 Mbit/s
T2 = 4x1544 + 136 = 6312 kbit/s
T3 = 7x6312 + 552 = 44736 kbit/s
T4 = 6x44736 + 5760 = 274176 kbit/s.

Au Japon les niveaux sont : T3 = 5xT2 = 32064 kbit/s et T4 = 3xT3 = 97728 kbit/s.

Multiplexage synchrone (G707..709):

Technologie dite SDH (Synchronous digital hierarchy). Nécessite un réseau synchronisé, l’extraction d’une voie sur un multiplex haut débit est possible directement.

STM : Synchronous Transport Module

⇒ STM1 = 155.520 Mbit/s
⇒ STM4 = 622.080 Mbit/s
⇒ STM16 = 2.488 Gbit/s
⇒ STM64 = 9.953 Gbit/s

Transmission :

TN4, STM1 sur coaxial, faisceau hertzien ou fibre optique,
STM4, 560M sur coaxial ou fibre optique,
STM16/64 sur fibre optique (λ=1330nm à 1550nm).

Actuellement la technologie WDM (Wavelength division multiplexing) multiplexe plusieurs longueurs d’ondes sur une seule fibre (8 à 64 séparées de 0,4 à 0,8nm dans la fenêtre des 1530..1620nm). On parle couramment de DWDM (dense WDM) lorsque l’on utilise plus de 8 longueurs d’onde. WDM permet de mieux utiliser la bande passante des fibres optiques et aux opérateurs de monter en débit sans recourir à des
travaux de génie civil. Chaque longueur d’onde véhicule actuellement 2,5Gbit/s ou 10Gbit/s (40Gbit/s en cours) et actuellement on peut avoir 40 longueurs d’onde sur une fibre (une centaine en prévision). La limite théorique d’une fibre optique est estimée à 15 Tbit/s !

Les liaisons SDH sont organisées en boucle pour assurer leur sécurité.

2.8 Synchronisation du réseau

La synchronisation du réseau (commutateurs) à démarré en 1986 et s’est achevée en 1988. Elle utilise comme référence, 7 horloges atomiques d’une précision de 10^{-12} (4 à Paris et 3 à Lyon). Les USRN sont maillées : chaque CTP reçoit 3 trains de fréquence (Paris, Lyon, un autre CTP), de même chaque CTS reçoit de 2 CTP et d’un autre CTS...

2.9 Dimensionnement d’un accès
Le nombre de circuits nécessaire entre deux commutateurs ou pour une entreprise dépend du trafic à écouter et de la probabilité de non satisfaction (perte d’appel) que l’on tolère.

Le taux de connexion (intensité du trafic) est définit par le rapport de la durée de connexion (du ou des organes connectés) sur la durée d’observation (une heure en général). Il s’exprime en **Erlang** ou en **minutes/heure**.

\[
I = \frac{1}{T} \int_{0}^{T} n(t) \, dt \quad \text{avec} \quad n = \text{nb d’organes connectés}.
\]

Probabilité de perte d’un appel (encombrement) :

\[
P = \frac{Y^M}{M!} \quad \text{avec} \quad Y = \text{intensité (erlang)}
\]

\[
\sum_{k=0}^{M} \frac{Y^k}{k!} \quad \text{M = nb organes (voies)}
\]

un abaque ci-dessous permettant de déterminer cette probabilité de pertes.

2.9.1 Exemple de dimensionnement d’un accès

Dans une entreprise, on a dénombré aux heures de pointes 200 appels d’une durée moyenne de 6 minutes à l’heure. On désire que la probabilité de perte d’un appel à ces heures n’excède pas 1%.

Intensité = 200 x 6 = 1200 minutes/heure ou 1200/60 = 20 Erlangs.

La moyenne est donc de 20 appels simultanés, en ne prévoyant que 20 voies de communications on peut constater (abaque) que le taux de perte sera de 15% !

Pour que le taux de perte soit < 1% il faut 30 organes (30 circuits de communication = 1 accès MIC ou 1 accès primaire RNIS).
3 SIGNALISATION ET TAXATION DE L’ABONNÉ

3.1 Signalisation chez l’abonné

3.1.1 Prise de ligne

- Au repos U=48 Volts (fourni par le commutateur de rattachement), \(i < 3 \, mA \).
- Décrochage : il faut \(i \) de 33 à 50 mA, le commutateur qui explore les lignes toutes les 500 ms détecte le décrochage et émet une tonalité continue "invitation à numéroter" (La3 = 440 Hz).

3.1.2 Numérotation

- Décimale (impulsions) : le combiné provoque des coupures de ligne calibrées (66-33ms) selon le chiffre (0=10 impulsions) avec un intervalle minimum de 350ms entre deux chiffres.
- Multifréquence (DTMF Dual Tone Multi-Frequency) : chaque chiffre est codé par une paire de fréquences d’une durée minimum de 40ms et séparés par un silence minimum de 40ms.

Si le silence entre deux chiffres est supérieur à 10 s (ou 20s) le commutateur émet la tonalité "occupation".

3.1.3 Acheminement

- Tonalité "acheminement" chez le demandeur : 440 Hz (50ms-50ms). Cette tonalité est supprimée depuis le 18/10/1996.
- Envoi du "signal d’appel" (courant de sonnerie) chez l’appelé : 80 V/ 50Hz, 1,7s-3,3s superposé à l’alimentation.
- Tonalité "retour d’appel" chez le demandeur : 440 Hz (1,7s-3,3s).
3.1.4 Autres signaux

- "occupation": demandé occupé ou encombrement 440Hz, 500ms-500ms,
- International : 330Hz + 440Hz,
- Impulsion de tarification (sur abonnement) : tonalité 12kHz, 80mV, 125ms (au lieu de l’ancienne impulsion 80V par rapport à la terre).
- Signal de rappel (Touche "R") : provoque une coupure calibrée (220..320ms) permettant au commutateur de saisir le N° qui sera transmis en cours de communication (services spéciaux : conférence...).
- Raccrochage supérieur à 400ms de l’appelant : coupure de la liaison et envoi de la tonalité "occupation" vers le poste resté en ligne.
- Raccrochage de l’appelé : la ligne est maintenue pendant une temporisation de 2 à 4s, un décrochage de l’appelé rétablit la communication.
- Inversion de polarité : l’alimentation 48V sera éventuellement inversée lors de l’établissement de la communication (début de taxation sur cabines publiques).

3.2 Signalisation dans le réseau

3.2.1 Signalisation via les circuits

L’établissement d’un circuit entre deux abonnés se fait de proche en proche. Le N° demandé progresse de commutateur en commutateur. La commutation sera donc assez lente et un circuit sera utilisé pour l’acheminement de l’appel, même si l’appelé est "occupé" ! Cette signalisation est abandonnée en France.

3.2.2 Signalisation par réseau sémaphore

Toute la signalisation se fait sous la forme de messages (paquets X25) et est transportée par un réseau sémaphore indépendant du réseau de transport (circuits). Les deux réseaux utilisent les mêmes infrastructures numériques (MIC) mais sont organisés différemment. Des PTS (Points de Transfert Sémaphore) routent la signalisation et des PS (Points Sémaphore) assurent l’interconnexion avec les commutateurs.

La signalisation par canal sémaphore

3.3 Plan de numérotation

Un plan mondial, défini par le CCITT (UIT-T), divise le monde en 9 zones (1 = Amérique du nord, 2 = Afrique, 3 = Europe du sud, 4 = Europe du nord ...). Un abonné sera identifié par 3 chiffres définissant sa zone internationale + 8 chiffres.

USA : 1xx + 8 chiffres,
France : 33x + 8 chiffres, (330..339 prévus)
Malte : 356 + 8 chiffres.

Le n° d’un abonné est AB.PQ.MC.DU avec AB = zone géographique (département), PQ = commutateur de rattachement, MCDU=n° d’abonné.

♦ **Avant 1985** : Numérotation locale à 6 chiffres PQMCDU et interurbaine par 16 puis ABPQMCDU.

♦ **23/10/1985** : Numérotation à 8 chiffres, la France est divisée en 2 zones, numérotation dans une zone par ABPQMCDU, appel de l’autre zone par 16 (+1 pour zone Paris) puis ABPQMCDU.

♦ **18/10/1996** : Numérotation nationale à 10 chiffres EZABPQMCDU (E = opérateur longue distance, Z = zone) avec disparition du 16, la France est divisée en 5 zones

(01..05), 1 = île de France, 2 = nord-ouest..., 6 = mobiles, 7 = n° non géographiques, 8 = n° spéciaux, 00 = international.

♦ 1/1/1998 : Avec la libéralisation des télécommunications, de nouveaux opérateurs peuvent apparaître, les plus importants se sont vus attribuer un préfixe par l’A.R.T. (Autorité de Régulation des Télécommunications - ex DGPT) : 0 = opérateur local, 1 = services d’urgences, 3 = services télématiques, puis 2 = Siris, 4 = Tele2, 5 = Omnicom/Ventelo, (6 = Esprit telecom), 7 = Cegetel, 8 = France Télécom, 9 = 9 Télécom (Bouygues). Un abonné désirant utiliser le réseau Cégétel composera par exemple le 72.98.47.81.00 (70... pour international). Pour les petits opérateurs, le préfixe 16 précédera le n° à 2 chiffre de l’opérateur (ex 18 pour MCI-worldcom, 26 pour Tiscali, 82 pour Colt...) puis le n° à 10 chiffres appelé.

♦ 1/1/2000 : le 0 doit suffire pour désigner son opérateur local habituel et son opérateur longue distance prédéfini.

♦ 1/1/2001 : l’ART autorise le dégroupage des lignes d’abonnés (un opérateur concurrent doit pouvoir se raccorder sur la paire de cuivre chez France Télécom), mais la mise en œuvre effective de ce dégroupage prend du retard... Attribution de fréquences pour la création de BLR (Boucle Locale Radio) afin de permettre le raccordement alternatif d’abonnés. Portabilité des numéros : l’abonné pourra conserver son n° même s’il change d’opérateur ou de lieu géographique (actuellement effectué par un mécanisme de renvoi d’appel, on prévoit la mise en place d’un mécanisme de routage intelligent).

3.4 Tarification

Les communications étaient facturées uniquement par UT (Unité Téléphonique) indivisibles et comptée d’avance. La durée de l’UT dépendant de la distance, et de l’heure. Pendant de nombreuses années le prix de l’UT était de 0,615 FHT, les durées ont par contre été modifiées.

La tendance générale va vers une augmentation du coût des abonnements et une diminution de celui des communications interurbaines et internationales. L’apparition de services forfaitaires se généralise.

♦ 1956 : La France est divisée en 478 circonscriptions tarifaires. Le coût du raccordement est élevé, les communications locales sont sans limite de durée et l’interurbain est par paliers de 25, 50, 100 et 200 km.

♦ 1978 : Suppression du palier de 200 km.

♦ 1985 : Les communications locales sont taxées à la durée UT = 20 minutes puis 6 minutes en 1986. Les durées de l’interurbain sont progressivement allongées (UT sur plus de 100km = 12s, 16s puis 17s en 1990).

♦ 1994 : Création des zones locales élargies, dans les zones limitrophes on applique la tarification locale dont l’UT est ramenée à 3 minutes (45s et 6 minutes auparavant). Les durées de l’interurbain sont allongées : pour 30km<d<52km de 24s on passe à 45s ; au delà de 100km on passe de 17s à 19s puis 21s en 1995. Abonnement unique et augmenté = 45F.
1996 : Création de service réduction (primaliste et temporalis). Interurbain à 26s, abonnement à 52,80F. Fusion de certaines circonscriptions afin de corriger les anomalies des zones locales élargies de certains départements. Fusion de "Quimper" et "Carhaix" en Finistère et de "Lorient" et "Auray" en Morbihan par exemple.

Mars 97 : Augmentation de l’abonnement (68 F/mois) et durée de l’UT à 32s. Option forfait local (6 heures pour 30F/mois aux heures creuses).

Octobre 97 : Tarification à la seconde (0,28 .. 1,14 F/minute) après une unité forfaitaire (0,74F pour 180s en local .. 39s en national). Fusion des zones >52 km et >100 km. Réductions horaires corrigées : 1/2 tarif de 19h..8h et Week-end seulement, après l’unité forfaitaire.

1998 : Libéralisation, apparition de nouveaux opérateurs ... Les communications locales restent cependant liées à France Télécom qui est propriétaire des lignes d’abonnés.

2001 : Dégroupage des lignes d’abonnés imposé à France Télécom par l’ART et libéralisation de fréquences permettant la constitution de boucles locales. De nouveaux opérateurs locaux peuvent apparaître.

4 INTERFACE TÉLÉPHONIQUE

Le réseau français est numérisé, les communications téléphoniques sur le RTC sont analogiques (bande 300-3400Hz) mais uniquement du terminal de l’abonné à son commutateur de rattachement. Le signal analogique est convertit en numérique, et réciproquement, dans le commutateur avant d’être acheminé.

4.1 COFIDEC (Codeur-Filtre-Décodeur)

Le signal analogique sera numérisé selon la technique MIC G711 (Modulation par Impulsion et Codage = PCM Pulse Code Modulation). On échantillonne le signal à 8 kHz puis on convertit les échantillons en donnée numérique sur 8 bits. Une voie téléphonique nécessite donc un canal à 64000 bit/s.

Afin d’améliorer le rapport signal/bruit, le signal subit une compression logarithmique. La technique la plus simple pour effectuer cette compression est de numériser linéairement sur 13 bits puis de ramener à 8 bits par un codeur.

Filtrage : à l’émission par un passe-bande 300..3400 Hz (±0,125dB) et une réjection du 50Hz et du 8kHz (-18dB min), à la réception par un simple passe bas (lissage).

Le COFIDEC est installé dans les commutateurs pour le RTC et directement dans le terminal de l’abonné pour le RNIS.
La technique MIC présente l’avantage d’être simple et donc d’un coût raisonnable en 1985. Depuis, d’autres techniques plus élaborées et plus économes en dimension de canal sont parfois utilisées et permettent le multiplexage de plusieurs conversations sur un seul lien (interconnexion de PABX par exemple). Certaines techniques de compressions de la voix ont été normalisées par l’UIT-T :
- G726 = ADPCM (32 kbit/s)
- G728 = CELP (16 kbit/s)
- G729 = CS-Acelp (8 kbit/s)
- ETSI-GSM = RPE-LTP (13 kbit/s)
- ETSI-GSM réduit = VSELP (5,6 kbit/s)
- G723 = MP-MLQ (6,4 kbit/s).

4.2 Compression logarithmique

La numérisation introduit un bruit de quantification et la dynamique d’une communication téléphonique peut atteindre 40dB. Afin d’améliorer le rapport signal/bruit des signaux faibles on réduira le pas de quantification pour les faibles amplitudes et on l’augmentera pour les fortes.

4.2.1 USA : Loi µ

Approximation sur 15 segments de droite, \(\mu = 255 \)

\[
y = \frac{\log (1 + \mu x)}{\log (1 + \mu)} \quad \text{avec} \quad -1 < x < +1 \quad \text{et} \quad x = \frac{V_{\text{in}}}{V_{\text{max}}}
\]

4.2.2 Europe : Loi A

Approximation sur 13 segments de droite, \(A = 87,6 \)

\[
y = \frac{1 + \log Ax}{1 + \log A} \quad \text{pour} \quad \frac{1}{A} < x < 1 \quad (x = \frac{V_{\text{in}}}{V_{\text{max}}})
\]

\[
y = \frac{A x}{1 + \log A} \quad \text{pour} \quad 0 < x < \frac{1}{A}
\]

Les deux techniques sont très proches (voir courbes de compression) et donnent un rapport signal/bruit lié à la quantification de 38dB, ce rapport est constant pour un signal d’amplitude comprise entre -5dBm et -33dBm. Pour les signaux très faibles, elles se comportent comme une numérisation sur 12 bits pour la loi A et sur 13 bits pour la loi \(\mu \).

À titre indicatif, le S/B d’un codage MIC-DA (32kbit/s) est de 34dB, celui d’un MIC-56kbit/s (7bits) de 32dB.
Lois de compression logarithmique

Loi A (7 pentes)
Loi µ (8 pentes)

Tension à convertir

0 1/16 1/8 1/4 1/2 1/16
5 Défauts du réseau

5.1 Affaiblissement

Maximum abonné - abonné sur liaison totalement analogique = 30,8dB.

L’affaiblissement de la liaison abonné - Commutateur est proportionnel à $k\sqrt{f}$ (ligne pure) et varie d’environ 0,5dB à 300Hz jusqu’à 2,5dB à 3400Hz. L’affaiblissement maximum des autres liaisons analogiques est constant dans la gamme 300-3400Hz. Dans les liaisons numériques, l’affaiblissement entre commutateurs est invisible de l’abonné !

5.2 Distorsion de phase

Celle ci est très gênante en transmission de données, elle se traduit par une vitesse de propagation différente selon la fréquence. Sur une ligne pure, le temps de propagation varie de 40µs/km pour 300Hz à 5µs/km à 3400Hz.

Sur les lignes chargées (multiplex analogiques) la vitesse est constante et sur les liens numérique la distorsion de phase est négligeable.
Gigue de phase :
Seuls les modems au débit > 4800 bit/s y sont sensibles. Elle est provoquée généralement par les harmoniques du secteur et la conception des systèmes télécoms la maintient < 5°.

5.3 Bruit, diaphonie

5.3.1 Bruit blanc
Ce bruit est provoqué par l’agitation thermique, il est peu gênant car uniformément réparti dans la bande. Le rapport signal/bruit d’une liaison téléphonique est au minimum de 25dB.

5.3.2 Bruit impulsif
Ce bruit est très gênant et source d’erreurs. Il est provoqué par l’induction de parasites électromagnétiques et la diaphonie (numérotation décimale ...). La mesure de ce bruit ne doit pas révéler plus de quelques dizaines d’impulsions en 15 minutes.

5.4 Écho

L’écho dans une liaison est essentiellement provoqué par les circuits assurant le passage 2fils/4fils car il ne sont pas toujours bien équilibrés. Sur longues distances, cet écho est très désagréable en téléphonie aussi a t’on installé des suppresseurs d’échos qui atténuent fortement le canal dont le signal est le plus faible, la liaison est alors similaire à une liaison de type "half-duplex".

Afin de permettre la transmission de données en duplex, les modems émettent un signal à 2100 Hz qui inhibe le fonctionnement des suppresseurs d’échos. Ils doivent alors assurer eux-mêmes la suppression des échos et l’adaptation d’impédance terminale.

5.5 Qualité du réseau numérique

Initialement on a défini la qualité des conduits numériques par le taux d’erreur sur bit (BERT) et le taux d’indisponibilité d’une liaison. On s’est aperçu que les erreurs étaient souvent par paquets aléatoires, on a donc défini des nouveaux modèles d’erreurs.

La recommandation G.821 du CCITT caractérise les conduits numériques en prenant comme référence la plus longues liaison à 64kbit/s possible : 1250 km aux extrémités nationales et 25000 km de liaison internationale.

Les paramètres définis sont :
- **SAE** : Seconde avec erreur,
- **SGE** : Seconde gravement erronée (> 64 erreurs),
- **MD** : Minute dégradée (> 4 erreurs).

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Sigle</th>
<th>Définition</th>
<th>Objectif</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seconde avec erreur</td>
<td>SAE</td>
<td>Période de temps de 1s comptant au moins une erreur</td>
<td>8%</td>
</tr>
<tr>
<td>Seconde gravement erronée</td>
<td>SGE</td>
<td>Période de temps de 1s comptant plus de 64 erreurs</td>
<td>0,2%</td>
</tr>
<tr>
<td>Minute dégradée</td>
<td>MD</td>
<td>Période de temps de 60s comptant au moins 4 erreurs (sauf SGE)</td>
<td>10%</td>
</tr>
</tbody>
</table>
Une liaison sera considérée comme indisponible après 10 SGE consécutives. Les SAE sont inaudibles en phonie mais limitent la taille des paquets en transmission de données. Les SGE sont les plus gênantes dans une transmission aussi est-ce le paramètre le plus surveillé. Sur le réseau national 0,12% de SGE correspond à 4 SGE à l’heure.

MODELE DE LA COMMUNICATION DE REFERENCE

- **CL :** Centre Local
- **CAA :** Centre à Autonomie d’Acheminement
- **CTS :** Centre de Transit Secondaire
- **CTP :** Centre de Transit Principal
- **CTI :** Centre de Transit International

6 SERVICES SUR RTC

6.1 Services aux entreprises

Les entreprises possèdent un autocommutateur privé (PABX) permettant une commutation interne. L’interconnexion au réseau public des postes internes sera réalisée par cet autocommutateur et des services étendus du réseau public sont possibles. Avec la libéralisation, les offres et les conditions tarifaires évoluent rapidement. Voici, par exemple, quelques offres de base :

* **Groupement de ligne**
 * Analogiques (plus de 2 lignes sous le même n°), possibilités de lignes spécialisées à l’arrivée, au départ ou mixte. Abonnement à la ligne avec exonération possible pour les lignes spécialisées à l’arrivée.
 * MIC : 30 voies téléphoniques par liaison MIC 2Mbit/s. Remplacé par l’accès primaire RNIS.
 * RNIS : accès primaire de 15, 20, 25 ou 30 canaux B. Possibilité de groupement d’accès de base possible (plus de 2 canaux B).
S.D.A. (Sélection Directe à l’Arrivée)
Un numéro national est attribué à un poste de l’entreprise, la fin de la commutation est assurée par le PABX de l’entreprise. Abonnement par 10 n° de 30 à 100 et par 100 n° au delà (50F/10n°).

Numéros Spéciaux :
* Vert = 08 00 xx xx xx (ex 05.xx.xx.xx) - L’appel est facturé à l’appelé.
* Azur = 08 01 xx xx xx (ex 36.63.xx.xx) - L’appel est facturé à l’appelant comme une communication locale.
* Indigo = 0802 - 0803 - L’appel est facturé à l’appelant respectivement 0,78F/mn ou 1,17F/mn.

TELETEL
La création d’un service télétel (36...) nécessite un abonnement TRANSPAC. France Télécom facture la création du code d’accès et l’abonnement mensuel à ce code. Selon le type de service créé, une partie de la facturation des appels sera reversée au prestataire du service (Kiosque).

Audiotel
Service vocal, abonnement dégressif selon le nombre d’appel pour les services 08 36 65 xx xx et 08.36.66.xx.xx et kiosque similaire au télétel pour 08.36.67...à 08.36.70....

Réunion téléphone
Mise en relation simultanée de plusieurs abonnés. L’accès au service se fait par réservation. Les communications sont normalement facturées à l’organisateur de la réunion.

Tarification (Trafic Plus…)
Réductions pour les communications nationales, locales et internationales. Selon la consommation (similaire au Primaliste des particuliers).
Pour les très gros consommateurs, les réductions peuvent atteindre 50%…

6.2 Services aux particuliers
Certains services aux entreprises sont aussi disponibles aux particuliers : FADET, point phone....

Services confort
- Signal d’appel. - Transfert d’appel. - Conversation à trois.

Services divers
- Primaliste. Primaliste internet.
- Temporalis (réduction sur appels longs)
- Messagerie vocale …

Minitel
- 36.11 : Annuaire (gratuit 3 minutes).
- 36.12 : Minicom (messagerie) 1UT/45s.
- 36.18 : Minitel à minitel - 1UT/45s.
- 36.05 : Teletel - N° vert (tarif T0).
• 36.13 à 36.17 : Teletel (tarifs T1 à T60).
• 08.36.28/29.xx.xx : Teletel – (tarifs T60/70).
• 36.23 : TVR (Vitesse Rapide 9600-14400bit/s) - tarifs T36,T44,T60,T70.

Audiotel

• 08.36.64 … 70 : audiotel, tarifs selon numéro

6.3 Services nouveaux ou attendus

Ces services, déjà présent dans les entreprises sur les PABX, existent déjà dans certains pays (USA en particulier) et certains se mettent en place en France.

• Masquage temporaire de l’identification de l’appelant (**3651**).
• Identification du dernier appel (appel malveillant ... : **3131**).
• Rappel du dernier appelant (**3131**).
• Rappel automatique sur poste occupé (octobre 2000).
• Le refus d’appel (de certains appelants).
• Personnalisation de la sonnerie (sonnerie différente pour plusieurs membres d’une même famille : un n° d’appel par membre).
• Identification d’appel prioritaire (sonnerie différente pour certains appelants).
• Le renvoi sélectif (selon l’appelant).
• La programmation à distance des renvois (selon l’heure...)
• Messagerie (**3125**).

...